

What can DDS do for You?

Learn how dynamic publish-subscribe

messaging can improve the flexibility and

scalability of your applications.

2

2 Interoperable DDS Strategies

Contents:

 Abstract…3

 What does DDS do…3

 The Strengths of DDS…4

 DDS Compared to Other Middleware Technologies…8

 Why is CoreDX DDS different?...11

 Conclusion…15

3

3 Interoperable DDS Strategies

Abstract
The Data Distribution Service (DDS) technology may not be as well known or understood as

other middleware communications technologies like Corba, JMS, Web Services or even

traditional sockets that are key components of nearly all distributed applications. Developers

everywhere are familiar with these conventional data communications solutions, and may be

comfortable customizing them to their particular domain and application. However, the

flexibility and configurability of DDS makes it a better solution for applications in a wide variety

of industries, from enterprise servers to deeply embedded applications.

This paper focuses on the DDS technology in embedded environments and compares it with

Sockets, Corba, JMS, and SOA Web Services.

What does DDS do?
DDS, the Data Distribution Service, is a data communications standard managed by the OMG

(http://www.omg.org) that describes low-latency data communications for distributed

applications. The DDS standard includes support for Type-Safe application defined data types;

Dynamic Discovery of publishers, subscribers, and topics; rich Quality of Service policy

configuration; and on the wire Interoperability. DDS implementations provide high-performance

data communications, suitable for real-time and near real-time systems. There are currently

several commercial and open source implementations of the DDS standard available for use,

including products built for and targeting embedded communications.

The DDS Standard contains an easy to use, well defined Application Programming Interface

(API). This allows the developer to write portable code, code that will work with any compliant

DDS implementation. The DDS standard references the Real Time Publish Subscribe (RTPS)

Wire Protocol standard which defines the wire protocol for DDS communications. This allows

applications built with different DDS implementations to communicate, or interoperate, with

each other. Users of DDS do not tie themselves to a particular vendor, but to a standard, and can

change or intermix DDS vendors throughout the development and deployment cycles.

In general, DDS is a peer-to-peer communication model requiring no gateways, servers, or

daemons that must be run or configured.

Each application that will communicate over DDS contains the DDS API and provides the

discovery, and other required communication details.

Historically, DDS has been used in large DoD systems to satisfy Open Architecture requirements

for Extensibility, Maintainability, Composability, and Interoperability, but only in the larger

computer components of these systems. Now, with the availability of small-footprint DDS

implementations, many other applications can benefit from standardized publish subscribe

communications. New areas starting to adopt DDS include safety critical applications like

UAVs; renewable energy and smart grid suppliers; and resource constrained environments

within the DoD where enterprise DDS solutions were unsuitable.

4

4 Interoperable DDS Strategies

Figure 1

The Strengths of DDS

Publish Subscribe Architecture

DDS provides a flexible publish subscribe architecture. A publish subscribe architecture

promotes a loose coupling between data architecture is flexible and dynamic; it is easy to adapt

and extend DDS based systems to changing environments and requirements. The following

figure illustrates the DDS Publish Subscribe architecture where multiple Publishers and

Subscribers exchange strongly typed data through a common Topic. The communications are

controlled by a robust Quality of Service model.

An application may be a publisher of data, a subscriber of data, or both a publisher and

subscriber. An application may participate in multiple Domains and include multiple publishers

and subscribers. Figure 2 is an example of how DDS might be applied in a system. This

example has several sources of “raw data”, a data processor that performs some processing on

the raw data to produce “processed data”, several end users working with the processed data, and

an administrative user performing analysis, maintenance, or auditing functions.

In this example, the darker blue boxes represent applications communicating over a DDS

network. These applications might be running together on 1 host, or they might be distributed

over multiple hosts. A DDS application simply publishes or subscribes to data, without concern

for what, if anything, might be on the other end of its communications.

5

5 Interoperable DDS Strategies

Figure 2

Discovery

DDS provides Dynamic Discovery of publishers and subscribers. Dynamic Discovery makes

your DDS applications extensible. This means the application does not have to know or

configure the endpoints for communications because they are automatically discovered by DDS.

This dynamic discovery goes even further than discovering endpoints. DDS will discover if the

endpoint is publishing data, subscribing to data, or both. It will discover the type of data being

published or subscribed to. It will also discover the publisher’s offered communication

characteristics and the subscriber’s requested communications characteristics. All of these

attributes are taken into consideration during the dynamic discovery and matching of DDS

participants.

DDS participants can be on the same machine or across a network: the application uses the same

DDS API for communications. Because there is no need to know or configure IP addresses, or

take into account the differences in machine architectures, adding an additional communication

participant on any operating system or hardware

platform becomes an easy, almost trivial, task.

Strong Type Safety

DDS provides strong type safety by requiring the application to specify the types of data used for

communications. The application then reads and writes typed data. For example, a C

application will call write() with a specific structure type, not a void pointer.
/* Declare a variable with an application-defined data type */

StringMsg myStringMsg;

/* Call write() with the typed variable, no casting necessary */

StringMsgDataWriter_write (dw, &myStringMsg, DDS_HANDLE_NIL);

6

6 Interoperable DDS Strategies

This allows for more errors to be caught early in the development cycle, reducing development

costs.

The application defines the data types that will be used for communications using a platform

independent language. DDS implementations provide a tool to compile this data type definition

into a natural, programming language specific, data type. This

publishing data and subscribing to data over the DDS network.

QoS Policies

DDS provides a rich set of Quality of Service (QoS) policies to tailor the behavior of

communications. These QoS policies can be used individually or together to affect a variety of

communications aspects, including reliability, performance, persistence of data, and amount of

system resources used. These QoS policies set DDS apart from all other communication

middleware solutions. The breadth and depth of the configuration available with these QoS

policies allow DDS to be a superior choice for communications in a large variety of industries

and architectures.

Interoperability

DDS Interoperability is the ability of DDS implementations from different vendors to

communicate. The Real-Time Publish Subscribe (RTPS) protocol defines the standardized wire

protocol for DDS and is what allows interoperability on the wire between different

implementations of DDS.

Architects and system designers in charge of large software systems understand the importance

of interoperability, and how difficult it is to obtain. Each DDS implementation offers its own

strengths and advantages. Large software systems contain many subsystems and components,

and frequently, each of these parts has different networking requirements. When you are writing

your own communications software, you can customize it to meet the requirements of each

subsystem. Until now, this has not been possible with commercial communication middleware

products. However, with today’s interoperable DDS implementations, system architects have the

flexibility they require to select the DDS vendor that best meets the requirements of each part of

their system, and will maintain a flexible, interoperable architecture.

7

7 Interoperable DDS Strategies

Not all DDS implementations are interoperable. There are currently three vendors active in

interoperability testing and demonstration: Twin Oaks Computing, RTI, and PrismTech. These

vendors are active at the OMG Technical Meetings and regularly test and demonstrate their

interoperable DDS products. [http://www.omg.org/news/releases/pr2009/03-25-09.htm]

Performance

DDS is a low-latency communication architecture, and while different implementations of DDS

will have different performance characteristics, in general all implementations will be high-

performance. This is because the DDS and RTPS specifications are written to satisfy the

requirements of real-time and near real-time systems.

These specifications contain instructions to keep data copies to a minimum within the DDS

middleware. They also specify a compact data encoding on the wire, light-weight notification

mechanisms, and the ability for the application to specify resources limits: allowing DDS to pre-

allocate memory and reduce the number of memory allocations during run-time. All of these

characteristics result in DDS implementations that are in general efficient, low-overhead, and

high-performance.

8

8 Interoperable DDS Strategies

DDS Compared to Other Middleware Technologies

DDS vs. Sockets API

The Sockets API has been around for decades, and it continues to be used in virtually all

industries requiring data communications. Many developers consider the Sockets API to be the

clear choice to meet strict performance requirements or to perform communications on

specialized hardware and operating systems. Especially in embedded environments, many other

communication middleware technologies simply do not fit. With very constrained memory and

disk resources, and often with specialized processors and networking hardware, writing

customized code using sockets has been the preferred solution to embedded communications.

DDS provides low-latency, high-throughput data communications, similar to the performance

that can be achieved with raw Sockets. And, with small footprint DDS implementations, DDS

can not only run in resource constrained environments, it can also be easily ported to run on and

use custom hardware and operating systems.

The architecture between the TCP Sockets API and DDS is fundamentally different: TCP

Sockets are connection oriented, a point-to-point, client-server architecture. This requires that

clients and servers know each other’s location in order to connect. This is vastly different from

the publish-subscribe architecture of DDS.

With DDS, the development of distributed applications is simplified. DDS provides a common

API regardless of operating system or hardware architecture. DDS handles the discovery and

management of remote endpoints. DDS handles the details of communication behaviors like

filtering, reliability, durability, saving historical data, detecting deadline misses and changes in

liveliness, and many more. These are all features that do not need to be coded, they are accessed

through the standard DDS API. This leaves you more time to focus on the functional

requirements of your applications.

9

9 Interoperable DDS Strategies

DDS vs. CORBA

The CORBA and DDS technologies share the same roots as an open standard managed by the

OMG. Probably because of this, there are some similarities, especially in the strong type safety

provided by both technologies. Although both technologies contain standards for an

interoperable wire protocol, DDS vendors have shown a unique cooperation in testing and

demonstrating inter-product interoperability.

CORBA is another client-server middleware, based on remote procedure calls, or “remote

invocations” in CORBA terminology. CORBA provides a layer of abstraction using an Object

Request Broker (ORB) to manage the connections. Clients and Servers need to know about each

other directly or use a Naming Service.

The above table summarizes the similarities and differences between DDS and CORBA

10

10 Interoperable DDS Strategies

DDS vs. JMS

The Java Messaging Service (JMS) and DDS are both publish-subscribe middleware

technologies. This provides some common ground for comparing the two technologies, but there

are also some significant differences.

JMS uses a server for communications that must be configured with the queues or topics that will

be used. While publishers and subscribers themselves are loosely coupled, each application

participating in JMS communications must connect to a JMS server. The JMS server handles the

details of connecting publishers and subscribers. In contrast, DDS does not require any servers

or daemons: DDS handles discovery and management of endpoints in each DDS application.

Using DDS eliminates the need for a server, and thus the potential single point of failure, and

reduces the complexity of the deployed network.

DDS offers some significant benefits that are not available from JMS offerings, including the

dynamic discovery of endpoints, no server or daemon process required; the ability to tailor

communication behaviors of individual Data Readers and Data Writers through Quality of

Service policies; advanced time and content based filtering; and proven interoperability between

different vendor implementations.

DDS vs. Service Oriented Architecture (SOA)

Service Oriented Architecture is an architectural style implemented by many technologies such

as WS (Web Services), JMS, CORBA, and DDS. DDS distinguishes itself from other SOA

publish-subscribe technologies such as JMS and WS Notification by its robust Quality of Service

policies including complex time and content based filters. DDS allows application developers to

configure the urgency, importance, reliability, and persistence of each piece of data to be

communicated. DDS makes an excellent interoperable publish subscribe SOA component.

The above table summarizes the similarities and differences between DDS and JMS.

11

11 Interoperable DDS Strategies

 Why is CoreDX DDS different?
CoreDX DDS, an implementation of the DDS and RTPS standards, provides a number of

significant technical benefits over leading commercial and open source DDS implementations.

Small Footprint

CoreDX DDS is a full-featured DDS implementation that comes in a surprisingly small package.

The entire ‘C’ library, containing full interoperability with the RTPS wire protocol and support

for all the standard, and a some additional QoS policies, is a mere 500 KB. That’s Kilobytes, not

Megabytes! Our CoreDX DDS Ping application (text-based application built to test

interoperability over lots of QoS policies) is 250 KB.

While CoreDX DDS can run on enterprise-class servers, it does not require expensive compute

platforms. CoreDX DDS makes a DDS application run on standard, Intel-based desktops and

laptops, Single Board Computers (SBCs) with Intel or PPC processors, and even smaller form

factor computers using ARM processors. Applications built with the standard CoreDX DDS

product can run on machines with less than 640 KB of memory.

Advanced Multicore Support

With the growing prevalence of multi-core computer systems,

software architects are presented with many opportunities for

performance improvements; however, parallel-programming

environments raise significant complexity challenges.

Programming languages and Operating Systems provide some

12

12 Interoperable DDS Strategies

tools to help reduce the complexity of parallel programming; but these fundamental tools are

complex in themselves.

The CoreDX DDS middleware simplifies the task of putting additional cores to work. The

engineers at Twin Oaks Computing have worked with multi-threaded and parallel programming

environments for over a decade. This expertise has been incorporated into the advanced data

pipeline architecture in CoreDX DDS™. By internally pipelining the flow of data, CoreDX

DDS™ can employ multiple processing cores simultaneously. This automatic distribution of

work across multiple cores is easy to exploit in application code because of the flexibility of the

CoreDX DDS™ API.

With these tools, developers can write application software with a single thread of control, and

the CoreDX DDS™ middleware will distribute the communications work across multiple cores.

This simplifies the application code while employing sophisticated parallel programming

technologies.

Low Line of Code Count

The number of software lines of code (SLOC) in a software product is not something every

customer considers. Of course, SLOC counts are important to systems with safety critical

requirements. These systems must certify each line of code, and 3rd party software packages like

communication middleware are not exempt from this certification process. This adds an

additional cost to every line of code in the system. However, SLOC counts also have

implications outside of the safety critical markets.

Every line of code in a software product has a cost associated with it, and not just the cost of

certification for safety critical applications. Twin Oaks Computing not only understands this;

this idea is the foundation for our software development processes. Each line of code developed

for CoreDX DDS must be tested and maintained over the life of our product. Larger software

baselines will have greater test and maintenance expenses. Each line of code has the potential

for increasing the number of instructions that must be executed, and degrading the overall

performance of communications. In addition, each line of code has the potential for a

programming error, or bug, and more lines of code make it difficult to track down and identify

such errors.

These are fundamental concepts in any software development project, and truly experienced

software engineers understand the importance of writing code that is well thought out and

compact. Every engineer at Twin Oaks Computing understands these concepts and follows a

specific software process for making changes to the CoreDX DDS baseline. Each software

addition and modification is carefully analyzed for its SLOC and performance impact and benefit

to the overall product. If we are not happy with the end result, we go back to the drawing board

for another solution. These fundamental software engineering concepts and complementing

processes ensure the CoreDX DDS baseline maintains it status as the World Leading Small

Footprint DDS Implementation.

The complete CoreDX DDS baseline includes fewer than 35,000 SLOC for the Standard Edition.

Twin Oaks Computing also has a Safety Critical Baseline for the CoreDX DDS product, which

13

13 Interoperable DDS Strategies

has fewer than 13,000 SLOC. This new Safety Critical Baseline includes all the QoS policies

and features of the standard CoreDX DDS baseline. In fact, the real difference between the two

baselines is the discovery process: the Safety Critical Baseline contains a modified (less

dynamic) discovery process.

Performance

The performance of most DDS implementations will be good – very good when compared with

JMS and other XML-based communication middleware technologies. The performance of

CoreDX DDS goes further. For example, on a 1Gb network, CoreDX DDS can provide

throughputs over 900 Mbps, and latencies around 60 microseconds.

The performance that can be achieved with any communication middleware is going to depend

on the network and machine configurations: the switch hardware, network interface card (NIC),

operating system, and network device driver all impact the baseline throughput and latencies that

can be achieved on a system.

The application developer has control over the performance achieved by adjusting how CoreDX

DDS is configured and used.

14

14 Interoperable DDS Strategies

15

15 Interoperable DDS Strategies

CoreDX DDS provides a number of configuration options that will affect the performance of the

system. First, the data types employed will affect performance. In general, data types that result

in smaller message sizes will provide lower latencies, while data types that result in larger

message sizes will provide better throughput. In addition, many DDS QoS policies will affect

performance, including Reliability, History, Resource Limits, Latency Budget, and Durability.

In general, the best performance can be achieved by setting Resource Limits and using data types

that are fixed sizes (allowing CoreDX DDS to reduce the amount of memory allocation

performed during operations by pre-allocating the necessary resources). In addition, throughput

can be improved by using larger message sizes and longer Latency Budgets. By contrast, latency

results can be optimized by using smaller message sizes and no Latency Budgets.

Dynamic Types

A feature exclusive to CoreDX DDS is support for Dynamic Type Technology. This innovative

new technology eases system integration challenges, and enables bridging DDS data between

disparate systems in a flexible and dynamic environment. This technology enables DataReaders

to dynamically, at run-time, determine the topic data types. Through Dynamic Type

introspection, the subscribing application can explore the data type and access data fields.

Dynamic Type Technology is a critical component for the deployment of useful DDS bridging

solutions. Without this technology, DDS bridges must be maintained and upgraded in lock-step

with the systems they support. Dynamic Types offer a flexible solution that lowers Total Cost of

Ownership.

Conclusion
Using DDS for data communications between distributed applications provides a number of

benefits over other traditional data communication solutions. Benefits of DDS include Dynamic

Discovery, strong Type Safety, a wide variety of configuration options in the QoS policies,

Interoperability, and Performance.

While the DDS technology has been available for nearly two decades, until recently these

implementations required resources not available to embedded application designers. Today, all

the benefits of DDS are available in a significantly smaller footprint, the perfect solution for not

only embedded environments, but also safety critical applications that must certify every line of

code.

16

16 Interoperable DDS Strategies

About Twin Oaks Computing

With corporate headquarters located in Castle Rock,

Colorado, USA, Twin Oaks Computing is a company

dedicated to developing and delivering quality

software solutions. We leverage our technical

experience and abilities to provide innovative and

useful services in the domain of data

communications. Founded in 2005, Twin Oaks

Computing, Inc delivered the first version of CoreDX

DDS in 2008. The next two years saw deliveries to

over 100 customers around the world. We continue

to provide world class support to these customers

while ever expanding.

Copyright © 2011 Twin Oaks Computing, Inc.. All

rights reserved. Twin Oaks Computing, the Twin Oaks

Computing and CoreDX DDS Logos, are trademarks

or registered trademarks of Twin Oaks Computing,

Inc. or its affiliates in the U.S. and other countries.

Other names may be trademarks of their respective

owners. Printed in the USA. 12/2011

Contact

Twin Oaks Computing, Inc.

(720) 733-7906

+33 (0)9 62 23 72 20

755 Maleta Lane

Suite 203

Castle Rock, CO. 80108

www.twinoakscomputing.com

